

Blockchain implemented in JavaScript tested using Postman

and Jest Testing Framework
Kavya Nannaka, Sherief Elsowiny

Introduction: 3

Objective: 3

Jest 4

Postman 4

Test Plan and flow: 7

Black box testing partitions 7

White box testing plan 8

Essential units to test 9

Test case design 9

Test Execution and results 11

Black Box Results 11

White Box Results 14

Conclusion: 19

Appendix: 19

Block Class 20

Blockchain Class 21

Code Coverage Report 22

Block test (a) 22

Block test (b) 23

Blockchain test (a) 24

Blockchain test (b) 25

Blockchain test (c) 26

Blockchain test (d) 27

Blockchain test (d) 28

References: 28

Introduction:

Blockchain technology has seen a rise in popularity with many startups trying to

capitalize on the trending technology and build communities and products around

it. Why is this trending technology of Blockchain so enticing however? Well,

Blockchain is known for its powerful attributes of being transparent, having a

public ledger available for viewing, and immutability [1]. Many cryptocurrencies

are built on top of Blockchain, and take these powerful attributes and market it as a

reliable form of currency where transactions can be easily viewed, and the

Blockchain reliable. It’s known to possess, internally, certain functionality that

allows it to be resilient in tampering or intelligent enough to handle the mine rate.

Luckily for us, we have a simple Blockchain technology on hand built in

JavaScript that we have tested. This simple software has public endpoints available

for testing as an end user, in which a user would want to create or view blocks on

the Blockchain. The software is also open-source, allowing us to test in a white

box manner the functionalities that are integral to a solid Blockchain. In our

requirements analysis, we decided to test the important factors of what a

Blockchain should have, such as what occurs when the chain is tampered with in

various ways, or the event of the chain being replaced successfully. We used Jest

for this testing, allowing us to test the individual code blocks and produce an

accompanying coverage report. When it came to the front end portion of what an

end user would come across, we used Postman to test the API functionality in a

black box manner ignoring the intrinsics of the software, focusing on I/O

operations that a user would do.

Objective:

We plan to implement both white box and black box testing and other various

testing. In whitebox testing we will focus on code coverage. For blackbox testing,

we aim to focus on testing the functional requirements of the software. Several

techniques we may use include requirements-based testing, boundary value testing,

and negative-positive testing.

Software tools:

Jest

Jest is a popular testing library built by Facebook and used by many famous

companies. It simplifies a lot of configuration and allows us to create easy tests by

creating files ending in .test. We can define test suites for our code where related

tests are contained by using a Jest function called “describe”. Inside our test suites,

we create various tests, mocking different functionality or logic. An example taken

from the site is given below [2].

Postman

Postman is a tool used to test API’s and their responses, coming equipped with all

the needs an application would need to test an API’s endpoints. In our testing, we

make use of Postman for the testing of the public facing endpoints of the

Blockchain API. We are able to test what a user would do when requesting the

API, as well as test the other features associated with API’s such as the protocol

used and how the API handles it. This will allow us to mimic whether the user is

creating or trying to receive a resource, as well as what happens when improper

fields are put in.

Steps followed:

● Defining the Blockchain Cryptocurrency requirements and specific software

requirements.

● Understanding the functionality of the Jest and postman tools

Description:

In terms of black box testing, we focus on two front facing endpoints that the

software offers and explore two perspectives as the end user.

In case one, we consider the end user as anybody who would want to access the

API and its accompanying functionality. In this regard, we simply need to test the

public endpoints of what is offered by the software: retrieving the blockchain and

the creation of a new block. This can be tested easily using Postman.

In the second case, we consider the end user to be for example another developer

who may decide to adopt this API into their own software. We then expand on our

test cases to include a few more cases where we explore specific protocols used in

API communication. When using Postman, the tool to test APIs, we can mimic a

realistic interaction that a user would have in the browser. Here we will be

assessing the responses of the server that is running the program with specific

protocols that a browser would implement. To be more precise, when a user

accesses a resource on the browser, they use a method known as GET request. In

our exploration as the end user, we can mimic the behaviors a realistic user would

use by performing these actions through Postman, albeit with the appropriate

protocols attached.

When looking deeper into the source code, we come across white box testing

where our knowledge of the code is apparent, and we can dive into the underlying

functions and logic that drives the application. Take into consideration the

necessities to deliver proper software. A lot of error handling and proper structure

of the code is needed to not only deliver something sustainable, but also something

less prone to break in production. In our viewing of the Blockchain through the

lens of white box testing, we can observe specific requirements that a blockchain

software or any software in that manner would need. When one wants to use a

Blockchain, they typically expect their data to be secured. The objective of

Blockchain technology is to rely on cryptography to hash and construct valid

blocks in a link that all relate to each other in some capacity while also containing

data. Given that we know our software’s source code, we can explore first the

block class that encompasses the Blockchain, then expand into the Blockchain

itself testing for cases of functionality and adequate handling of tampering.

When consolidating this into a test plan, our analysis of our requirements is split

into considering the software itself, and the public endpoints that an end user

would use. The following are what we decided on for our requirements.

We decided on the following requirements from the front facing API of the

Blockchain.

● Ability to create a new block on the Blockchain

● Ability to view the Blockchain(transparency requirement)

● Proper protocols used in our requests I.E

○ POST - Request (Application should respond correctly)

○ GET - Request

● Error Handling and validation

When it came to testing the block and Blockchain itself, we decided on the

following requirements.

Block

● Should create a block based on adequate inputs

○ Returns a block instance

○ References the last hash of the previous block

○ Creates a hash itself/stores data inside the block

○ Adjusts difficulty for quickly mined block

Blockchain

● Should always start with the same genesis block to indicate the beginning of

the ledger

● Ability to add Block with data to Blockchain

● Ability to replace Blockchain with a new valid chain

 Testing for validity of chain

○ Testing for ability to view chain

○ Test for ability to mine block

○ Test for validity of block

○ A valid hash

Limitations:

More features of the code are available for testing and have been covered in the

coverage report. Although more details and testing would have been desirable, we

both faced time constraints and decided to focus on the practical aspects of the

software.

Test Plan and flow:

The software is expected to work in a way the user creates a new block and can

view it. This is the flow of what the user can expect in simplest terms. When it

comes to testing this, we can derive partitions to describe validity and use them to

help our test cases later. We can similarly do the same when it comes to

constructing tests for our white box testing.

Black box testing partitions

Module: api/mine

Notes: Creating a new block as a user

Partition Type Partition Description Test cases

Valid Value is part of valid data sets {“data”:”string value”}

{“data”: 4}

{“data”: {“object”:”value”}

}

{“data”: [“list”,0,”1”]}

Invalid No data supplied Empty JSON

Module: api/mine

Notes: Creating a new block API methods

Partition Type Partition Description Test cases

Valid Method is GET request GET /api/mine

Invalid Method is anything else POST /api/mine,

Delete,

Put

Module: api/blocks

Notes: Viewing the blocks on the blockchain using the correct method

Partition Type Partition Description Test cases

Valid Method is GET request GET /api/blocks

Invalid Method is anything else POST /api/blocks,

Delete,

Put

White box testing plan

With our white box testing plan, we decided to achieve 100% code coverage by

testing the individual units of code and their respective conditions. Being able to

see the code allowed us to decide on what was optimal for testing. We decided that

in terms of the flow for our block, we have the flow of a user mining a block and

retrieving a valid block, as well as the case of what occurs when a block is mined

too quickly. The difficulty of the mining should either increase or decrease

depending on the speed of the previous mined block. When it comes to the flow of

the blockchain, most notably we have the event of adding a new block to the

Blockchain to which we can test for possible situations of data being tampered

with in the Blockchain. Similarly, we have the event of the chain being replaced

but in the conditions it is valid. We were able to derive test cases for this as well by

planning to test for validity when replacing the chain. To reduce redundancy in

terms of explaining the simple test cases needed to achieve full coverage, we will

simply go over the key essential tests and include the coverage at the end.

Nonetheless, we have the following units to test.

Essential units to test

Block - Ensuring proper fields are computed for coverage report, and testing for

difficulty adjustments

Blockchain - Ensuring proper fields are computed for coverage report, and testing

for chain replacement, and specifically tampering when replacing the chain

Test case design

Test case Id Unit to test Assumption

s

Test Data Steps to be

executed

Expected

Result

Type Method

covered

1 Api - mine
block

Should be
able to create
a block with
data

data =
{dummy}

Create a
request to
endpoint
with data

Block with
data

Black Box x

2 Api - mine
block

Should not
be able to
create a
block
without data

none Create a
request with
no data

Error w/
message

Black Box x

3 Api - mine
block

Should not
be able to

create a
block using
this method

Data = any,
Method =

!POST

Create a
request with

any data not
using POST
method

Error
w/ message

Black Box x

4 Api - view
blocks

Should be
able to view
the
blockchain

None
needed/any/
DC

Create a
request to
view the
blockchain

Blockchain
is returned

Black Box x

5 Api - view
blocks

Should not
be able to
view the
blockchain

No data
needed/DC

Method =

Create a
request to
view the
blockchain

Error
w/ message

Black Box x

unless using
a GET
request

!GET not using a
GET request

6 Block Should be
able to create
a block

Genesis
block for
testing:

Mined block:
 const
data =
'mined data';

Retrieve last
block on the
blockchain

Use dummy
data to mine
new block

New mined
Block on the
Blockchain

White Box mineBlock

7 Block Should raise
difficulty on
quickly
mined block

Test Block,
Timestamp
difference
being less

than the
config’s
required I.E
1000ms

Use data to
call adjust
function on
the block

Assess the
returned
difficulty

Difficulty
should
increase by 1

White Box adjustDifficu
lty

8 Block Should lower
difficulty on
slowly
mined block

Test Block,
Timestamp
difference
being greater
than the

config’s
required

Use data to
call adjust
function on
the block,
assessing the

returned
difficulty

Difficulty
should
decrease by
1

White Box adjustDifficu
lty

9 Block Should have
lower limit
bound of 1

Lower
difficulty
beyond
lower bound
such as 0, -1
, etc

Call adjust
function on
new block
with lowered
difficulty

Difficulty
should be 1

White Box adjustDiffcul
ty

10 Blockchain Should be
able to add a
block

newData =
any

Call function
on
Blockchain

to add new
Block with
new data

Blockchain
should add
new block

White Box addBlock

11 Block Chain Invalid chain
when first
block is not
genesis
block

Anything
except the
original
chain’s data

Call on the
first block of
the
blockchain
and change
its data to
anything

other than
the current
data

Blockchain
should return
invalid

White Box isValidChain

12 Block Chain Invalid chain
when a
blocks hash
on the chain
is tampered

Any other
hash aside
from the one
you are
altering

Call a block
and alter it’s
hash

Blockchain
should return
invalid

White Box isValidChain

13 Block Chain Invalid chain
when a block
has an
invalid field

Any other
data than the
original you
are altering

Call a block
on the
blockchain
and change
its data to

anything
other than
the current
data it holds

Blockchain
should return
invalid

White Box isValidChain

14 Block Chain Replaces
Blockchain
if
Blockchain
is longer and

valid

Longer and
Valid
Blockchain

Create new
Blockchain
that is valid
I.E similar to
the old chain

Add new
blocks to the
Blockchain
Call replace
function

Blockchain
should be
replaced

White Box replaceChain

15 Block Chain Does not
replace chain
when new
chain is not

longer

Incoming
chain is not
longer

Create a new
Blockchain
not longer
than the

chain you are
replacing
and call to
replace the
chain

Blockchain
should not be
replaced

White Box replaceChain

16 Block Chain Does not
replace chain
when new
chain is

longer but
invalid

Incoming
chain is
longer but
invalid

Create a new
Blockchain
longer, but
invalidate it

by tampering
the data

Blockchain
should not be
replaced

White Box replaceChain

Test Execution and results

Black Box Results

Here we performed manual

testing with Postman and

included snippets of what

our test looks like. When we

make a request to test for validity, we use the

appropriate header method, while later testing for the

differences in methods.

Here is an image displaying how we structured our

data to be called with our first test being executed

calling to create a new block.

Our response can be seen in the following image,

where we see the blockchain returned. We marked

this test successful and

continued.

For the following test

we omitted data,

expecting to incur an

error. However, we

realized we obtained

the Blockchain still with the particular Block

lacking a data field. We concluded this was an error,

as there should be a middleware field that checks for

data being inserted.

For the following tests we tested using dummy data

and focused on changing the method in which we

obtain the data.

We included an image showcasing how we easily

changed from a POST

request to a GET request,

subsequently testing for

the different methods

available.

The results of the different methods showcased a 404 error, however no proper

error message or such occurred other than the one that is naturally produced. We

concluded the test was a fail, as we

required the chain to produce a better detailed error response for any API user. The

error did return a 404, which could be used to handle control flow, but with the

methods available for API’s and the methods needed of the API, we required that

the API itself send the error and not one be generated by the testing tool.

Nonetheless, we included an image to showcase the error response we received,

where the method we tested for other than POST was included in the error

response(generated automatically, not by the API).

To give an example of this, we also included an image of what an appropriate

response should look like for what our expected results were defined as. The

response appropriately showcases a 404-error status in this case, but also includes

an appropriate error message. Following this, we tested for the viewing of the

Blockchain which returned as expected, and subsequently tested similarly the

different methods. Our expectations at this point were that we were going to

receive the same unimplemented error message as received in the previous tests for

the other endpoint. As we expected, our expectations were correct, and we debated

whether or not the API should have even implemented that endpoint for methods

other than GET and concluded that a proper error message should still be included

but that it passes on not returning the Blockchain for that method. We further

concluded that middleware validation should be attached as this could further

decrease any attacks for users that may eventually be a part of this Blockchain.

Test ID Actual Result Pass/Fail Comments Type

1 Returns entire

Blockchain

Pass Black Box

2 Returns entire

Blockchain

Fail Developers should

include middleware to
check for data field, or
indicate what is
needed

BB

3 Autogenerated error
message

Pass on receiving 404
error, Fail on error
message

Developers should
include an appropriate
error message such as
the one supplied

BB

4 Returns entire
Blockchain

Pass BB

5 Autogenerated error
message

Pass on not allowing
the Blockchain to be

viewed unless using a
GET request, Fail on
the error message
provided

Developers should
include an appropriate

error message,
however we concluded
this was least priority
and the test passes on
the other methods at
least being unavailable
Middlewares should

BB

be more of a priority

White Box Results

When it came to testing

the internal code, we

focused on covering the

different methods

within the code as well

as the statements and

different logic. We

included the testing in

the reports section, but

for testing the critical

components, we

included imagery and

descriptions. The

report showcases that

all the code has been

tested, but for the

testing of the initial

block and such, we

omitted this.

Here we used Jest to

create our test suites

and test cases. We

asserted our

expectations for that

function and logged

the results.

The mining function

associated with the

block class appears as follows.

To effectively test for this method of

obtaining a new mined block, we

configured some dummy data, and

tested the appropriate fields that the

new mined block should have.

We focused on the essentials of requiring the hash be

set and that it be matched to the difficulty criteria. We

console out our results and example mined block and

take notice that it passes as expected.

For our difficulty adjustment , we can

easily see the source code and make a

conclusion that the test will pass based

on the code itself. Nonetheless, we

include the image to showcase the

source code. Here we test for three

possible conditions and their

respective cases. To be more precise,

we test for the case when the

difficulty is either going to be

increased, decreased and the case

where the lower bound is reached.

The difficulty adjustment function is

used to aid in configuring the

Blockchains rate of mining, so we

test this to make sure it behaves as

expected.

We alter the timestamp that is used

as a parameter in the adjust functionality , to mimic the scenario of a block that has

been mined too quickly or too slowly. The adjust function depends on the mine

rate constant that is defined in configuration. What occurs here is there is a defined

rate defined in milliseconds in configuration that determines whether the difference

in mined blocks should result in a different difficulty adjustment. Here we can

make assertions and also log the new difficulty to see our test in action.

The next part is where we focus on the functionality of the Blockchain itself and

preview the Blockchain class and the

associated functions. We included the

Blockchain class in the appendix, as well as

the block class. For the Blockchain, we focus on

testing the addBlock function, as well as the

validation of the chain itself in which it expects

the first block to be the genesis block and the

chain to not be altered. When previewing the

source code, it's easy to see what the result will

be by glancing at the associated logic in the

validation. The function itself appears to recreate

the chain and test for if any fields have been

altered. We will essentially be testing this test.

We begin by testing the ability to add a new

block to the Blockchain. As

expected, we were able to add

a block to the Blockchain, and

in various data formats. We

take note of the requirement

that the newly added block

should reference the last hash.

We also test for this assertion.

We provide an image to showcase a log of the newly added block. We can also see

that this new block

references the hash of

the last block.

For testing the validity

of the chain, we

explored three

cases, in which we

alter the first block

on the Blockchain

known as the

genesis block. In

the other two

cases, we alter a

hash of a block on

the Blockchain. To

continue testing for validity, we

finally test for alteration of a data

field in the Blockchain on a

random block and log the results.

When using Jest, we can mock a

new and existing Blockchain and

add new blocks to it before each test run. Here we can observe how we utilize Jest

to do this, as well as how our test is described in assessing the validity of the chain

after genesis block alteration. We assert the validity to be false as expected.

Similarly, we conduct a test describing the scenario of tampering the hash on the

Blockchain expecting Jest to log for us that it is an invalid chain. We can do the

same when it comes to tampering the data on the blockchain as well. We simply

assert the expectation that it will be an invalid chain due to the data being

tampered.

 If the data were the same, it would not be tampered, and thus would be a valid

chain, so we tested on various bits of data. When it comes to testing the replacing

of the chain, we focused on four scenarios, where the incoming chain is longer, and

valid, the incoming chain is not longer,

invalid, or valid, and when the incoming

chain is valid and longer. When the

incoming chain is not longer, it should not

replace the chain. However, when the

chain IS longer, it depends on whether it is valid or not.

We test for all these cases showcasing our test cases and our test results. Since our

testing included the testing of the chain being valid, we were able to mimic an

alteration to the chain by altering the hash. This in turn invalidates the Blockchain,

resulting in the test passing as it expects the chain to not be replaced. We finally

test for the scenario in which the Blockchain does get replaced and the incoming

chain is valid.

Test ID Actual Result Pass/Fail Comments Type

6 Creates correct block Pass White Box

7 Raises difficulty Pass WB

8 Lowers difficulty Pass WB

9 Returns 1 for adjusted
difficulty

Pass WB

10 Creates block Pass WB

11 Invalid chain Pass Can’t alter genesis
block

WB

12 Invalid chain Pass Can’t alter hash WB

13 Invalid Chain Pass Can’t alter chain’s
data

WB

14 Replaces chain Pass Replaces chain when
valid

WB

15 Does not replace chain Pass Does not replace chain WB

16 Does not replace chain Pass Does not replace chain WB

Conclusion:

In our testing, we came across what we considered to be bugs in the way the API

handles its middleware. This is important because when it comes to middleware,

there should be checks for the validation of proper data, as well as authentication if

needed and proper error handling. We surprisingly uncovered the implementation

of proper error handling when it came to the creation of a block on the Blockchain.

When observing the internal mechanisms of the Blockchain and block class, we

tested for important functionality that is expected of the software. We were able to

test effectively for alterations on the Blockchain and the consequences of such

actions. We also were able to see how the Blockchain itself uses its functions to

validate the chain or add a new block. Our trust in the system should be a bit more

solidified now that we understand how the Blockchain validates and assess the

logic before it replaces the chain or confirms its validity of not being altered.

Appendix:

Block Class

Blockchain Class

Code Coverage Report

Block test (a)

Block test (b)

Blockchain test (a)

Blockchain test (b)

Blockchain test (c)

Blockchain test (d)

Blockchain test (d)

References:

[1] Conway, Luke. “Blockchain Explained.” Investopedia, Investopedia, 5

Dec. 2021, https://www.investopedia.com/terms/b/blockchain.asp

[2] “Using Matchers · Jest.” Jest Blog RSS, https://jestjs.io/docs/using-

matchers

https://www.investopedia.com/terms/b/blockchain.asp
https://jestjs.io/docs/using-matchers
https://jestjs.io/docs/using-matchers

